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Title:   TRAINING FILTERS FOR IP ADDRESS AND URL LEARNING 

CROSS REFERENCE TO RELATED APPLICATION 

This application is a continuation-in part of U.S. Application Serial No. 

10/454,168, entitled Origination/Destination Features and Lists For Spam Prevention 

and filed on June 4, 2003, the entirety of which is incorporated herein by reference. 

TECHNICAL FIELD 

This invention is related to systems and methods for identifying both legitimate 

{e.g., good mail) and undesired information (e.g., junk mail), and more particularly to 

detecting spam messages in part by scanning messages using a filter trained on IP address 

or URL features and another filter independently trained on text-related features and/or 

other features extractable from a message. 

BACKGROUND OF THE INVENTION 

The advent of global communications networks such as the Internet has presented 

commercial opportunities for reaching vast numbers of potential customers. Electronic 

messaging, and particularly electronic mail ("email"), is becoming increasingly pervasive 

as a means for disseminating unwanted advertisements and promotions (also denoted as 

"spam") to network users. 

The Radicati Group, Inc., a consulting and market research firm, estimates that as 

of August 2002, two billion junk e-mail messages are sent each day - this number is 

expected to triple every two years. Individuals and entities (e.g., businesses, government 

agencies) are becoming increasingly inconvenienced and oftentimes offended by junk 

messages. As such, spam is now or soon will become a major threat to trustworthy 

computing. 

A key technique utilized to thwart spam is employment of filtering 

systems/methodologies. One proven filtering technique is based upon a machine learning 

approach - machine learning filters assign to an incoming message a probability that the 

message is spam. In this approach, features typically are extracted from two classes of 
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example messages (e.g., spam and non-spam messages), and a learning filter is applied to 

discriminate probabilistically between the two classes. Since many message features are 

related to content (e.g., words and phrases in the subject and/or body of the message), 

such types of filters are commonly referred to as "content-based filters". 

With the onslaught of such spam filtering techniques, many spammers have 

thought of ways to disguise their identities to avoid and/or bypass spam filters. Thus, 

conventional content-based and adaptive filters may become ineffective in recognizing 

and blocking disguised spam messages. 

SUMMARY OF THE INVENTION 

The following presents a simplified summary of the invention in order to provide 

a basic understanding of some aspects of the invention. This summary is not an extensive 

overview of the invention. It is not intended to identify key/critical elements of the 

invention or to delineate the scope of the invention. Its sole purpose is to present some 

concepts of the invention in a simplified form as a prelude to the more detailed 

description that is presented later. 

The present invention provides for a system and method that facilitate 

distinguishing between spam and good messages in part by employing various smoothing 

techniques to place less emphasis on making weights associated with origination or 

destination features small and more emphasis on making weights associated with words 

small. As a result, a machine learning filter can rely more on IP addresses, for example, 

since they may need to see them fewer times than words to give them a higher weight. 

According to one aspect of the present invention, the system and method provide 

for a machine learning filter that utilizes origination features such as IP addresses and/or 

destination features such as URLs apart or independently from other features such as 

text-based features (e.g., key words or phrases). In particular, at least two filters can be 

trained independently of the other to handle different features. For example, a first filter 

can be trained on only origination or destination features and any other relevant features 

can be learned by a second filter, such that the training of the first filter does not 

influence the training of the second filter, or vice versa. 
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Messages can be subjected to at least one of the two filters, depending on the 

particular feature in focus or the most relevant feature in the particular message. For 

instance, imagine that the feature in focus is an IP address or a URL. Thus, one of the at 

least two filters can be trained on IP addresses or URLs and the other on non-IP address 

5 or non-URL features (e.g., text, key words, character strings, etc.). 

Spammers typically send out the same message over and over again from a 

known IP address; however every few weeks, spammers can send the same message but 

from a different or new IP address. Had the IP address stayed the same on the current 

message, one filter trained only on known IP addresses (e.g., known to be spam or known 

10 to be good) could have readily identified the message as spam. However, because the IP 

address is now unknown, a filter trained only on text-related or other features can be 

employed to determine whether the message is spam. Thus, two different filters can be 

trained for different features. As a result, the present invention can better generalize to 

cases when the IP address or URL is known or unknown. 

15 Alternatively or in addition, the two filters can be used together either 

concurrently or consecutively to scan for the different features without any undue 

influence from or reliance on the other. For example, imagine that a spammer is sending 

"get out of debt" spam from a particular IP address and imagine that a filter has learned 

that this IP address is a near perfect indicator of whether such messages are spam. In 

20 addition, a second filter has learned that key words or phrases such as "out of debt" 

"debt" "relief and "free quote" included in the message are also strongly indicative of 

spam. By combining the results of both filters, a spam prevention system can better 

distinguish between legitimate messages and spam, thereby improving spam catch rates. 

Another approach involves training multiple models of a filter. For example, one 

25 can be trained using IP addresses, another can be trained using the top (first) 24 bits of IP 

addresses, and yet another can be trained using the top 16 bits of IP addresses (or some 

number of bits less than 32 bits). For instance, if there is insufficient data on a particular 

IP address but the filter or model has observed several messages with the top 24 bits of 

that IP address, the model trained using the top 24 bits can be selected to scan or "filter" 

30 the IP address data that is on hand. Thus, multiple models can be trained such that only a 

3 
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specific model for which there is sufficient training data is used. This is also applicable 

to domain names. 

According to a further aspect of the invention, the ambiguity of origination or 

destination features in messages can be resolved to a large extent so that a machine 

5 learning filter can appropriately and accurately identify the relevant features to determine 

whether the message is spam. This can referred to as the ambiguity problem. 

The ambiguity problem can arise with respect to URLs as well as IP addresses. 

Any number of URLs can be added to a spam message in order to mislead and confuse a 

filter. A conventional filter may not be able to tell which URL is the relevant destination 

10 feature of the message. Hence, an accurate determination as to whether the message is 

spam can be compromised and perhaps unattainable the majority of the time. With 

respect to IP addresses, most clients cannot decipher which is the last IP address external 

to the system, the identification of which can be important to classify the message as 

spam or legitimate. To address either situation, various heuristics and/or algorithmic 

15 functions can be employed to learn the worst scoring IP address as well as to optimize or 

maximize accuracy of training data. In addition, user feedback as to which messages are 

marked as spam and which are marked as good can also be collected and used as input 

for a machine learning filter to at least facilitate determining which IP addresses or URLs 

appear to be spam or legitimate. 

20 As previously mentioned, the IP address and/or URL features may be the most 

valuable features extractable from a message for spam classification and prevention. 

However, machine learning filters can have no way of knowing this and in most cases, 

may assign equal or comparable weights to an IP address in a message as well as to the 

words in the message. Most machine learning systems provide some type of technique to 

25 smooth their parameters. The present invention also facilitates modifying the smoothing 

or regularization techniques so that IP addresses and URLs are counted as more valuable. 

Furthermore, it should be appreciated that various aspects of the present invention 

can be used in conjunction with a feedback loop, in which users who opt-in provide 

feedback regarding messages they have received to a machine learning system to affect 

30 filter updates and the like. 

4 
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To the accomplishment of the foregoing and related ends, certain illustrative 

aspects of the invention are described herein in connection with the following description 

and the annexed drawings. These aspects are indicative, however, of but a few of the 

various ways in which the principles of the invention may be employed and the present 

5 invention is intended to include all such aspects and their equivalents. Other advantages 

and novel features of the invention may become apparent from the following detailed 

description of the invention when considered in conjunction with the drawings. 

BRIEF DESCRIPTION OF THE DRAWINGS 

10 Fig. 1 is a high-level block diagram of a spam prevention system that can select at 

least one of at least two filters which are independently trained using different features to 

detect spam in accordance with an aspect of the present invention. 

Fig. 2 is a block diagram of a filtering system that provides employment of at 

least a combination of two different filters that can be utilized together to detect spam in 

15 accordance with an aspect of the present invention. 

Fig. 3 is a schematic flow diagram of an exemplary method for training at least 

two separate machine learning filters that are independent of the other in accordance with 

an aspect of the present invention. 

Fig. 4 is a schematic flow diagram of an exemplary method for determining which 

20 feature trained-filter or which model of filter to employ determines whether a message is 

spam in accordance with an aspect of the present invention. 

Fig. 5 is a flow diagram of an exemplary method for distinguishing between 

internal and external IP addresses to facilitate determining the last external IP address in 

accordance with an aspect of the present invention. The method is also applicable to 

25 URLs. 

Fig. 6 is a flow diagram of an exemplary method for distinguishing between 

internal and external IP addresses to facilitate determining the last external IP address in 

accordance with an aspect of the present invention. The method is also applicable to 

URLs. 

30 Fig. 7 is a flow diagram of an exemplary method that facilitates performing 

machine learning for functions that are not smoothly differentiable with respect to 

5 
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messages and IP addresses and features of IP addresses in accordance with an aspect of 

the present invention. 

Fig. 8 is a schematic diagram of machine learning systems and their smoothing 

can be altered so that IP addresses and URLs are given more value and counted as more 

5 valuable. 

Fig. 9 is a schematic block diagram of an exemplary communication environment 

in accordance with the present invention. 

DETAILED DESCRIPTION OF THE INVENTION 

10 The present invention is now described with reference to the drawings, wherein 

like reference numerals are used to refer to like elements throughout. In the following 

description, for purposes of explanation, numerous specific details are set forth in order 

to provide a thorough understanding of the present invention. It may be evident, 

however, that the present invention may be practiced without these specific details. In 

15 other instances, well-known structures and devices are shown in block diagram form in 

order to facilitate describing the present invention. 

As used in this application, the terms "component" and "system" are intended to 

refer to a computer-related entity, either hardware, a combination of hardware and 

software, software, or software in execution. For example, a component may be, but is 

20 not limited to being, a process running on a processor, a processor, an object, an 

executable, a thread of execution, a program, and/or a computer. By way of illustration, 

both an application running on a server and the server can be a component. One or more 

components may reside within a process and/or thread of execution and a component 

may be localized on one computer and/or distributed between two or more computers. 

25 The subject invention can incorporate various inference schemes and/or 

techniques in connection with generating training data for machine learned spam 

filtering. As used herein, the term "inference" refers generally to the process of 

reasoning about or inferring states of the system, environment, and/or user from a set of 

observations as captured via events and/or data. Inference can be employed to identify a 

30 specific context or action, or can generate a probability distribution over states, for 

example. The inference can be probabilistic - that is, the computation of a probability 

6 
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distribution over states of interest based on a consideration of data and events. Inference 

can also refer to techniques employed for composing higher-level events from a set of 

events and/or data. Such inference results in the construction of new events or actions 

from a set of observed events and/or stored event data, whether or not the events are 

5 correlated in close temporal proximity, and whether the events and data come from one 

or several event and data sources. 

It is to be appreciated that although the term message is employed extensively 

throughout the specification, such term is not limited to electronic mail per se, but can be 

suitably adapted to include electronic messaging of any form that can be distributed over 

10 any suitable communication architecture. For example, conferencing applications that 

facilitate a conference or conversation between two or more people (e.g., interactive chat 

programs, and instant messaging programs) can also utilize the filtering benefits 

disclosed herein, since unwanted text can be electronically interspersed into normal chat 

messages as users exchange messages and/or inserted as a lead-off message, a closing 

15 message, or all of the above. In this particular application, a filter can be trained to 

automatically filter particular message content (text and images) in order to capture and 

tag as junk the undesirable content (e.g., commercials, promotions, or advertisements). 

In the subject invention, the term "recipient" refers to an addressee of an 

incoming message. The term "user" refers to a recipient who makes use of messaging 

20 programs as well as filtering systems to detect and prevent spam and/or who has chosen, 

either passively or actively, or has been indirectly selected to participate in the feedback 

loop systems and processes as described herein. 

One of the primary tasks of filtering systems can be to improve catch rates and to 

increase gains in spam detection. According to an aspect of the present invention, 

25 changing the smoothing of particular message features can facilitate increasing gains in 

spam detection. Smoothing can refer to an amount of trust for a particular feature. In 

general, smoothing or regularization techniques try to keep weights of features small. 

Since the weights of features of a message, for example, are added together to compute a 

score, a small weight means it contributes very little to the final score. 

30 For instance, a random odd word in a message may just be there by chance. 

Therefore, it does not mean that the word can be trusted to indicate or identify either 
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good or spam messages just because it has been seen in a few spam messages or a few 

good messages. However, the IP address indicates where the message comes from and 

can be difficult to forge. Furthermore, most IP addresses are pure: pure good or pure 

spam. Thus, if the same IP address is seen a few times, one can be pretty certain that it 

5 can identify either good or bad messages, as the case may be. By changing the 

smoothing such that less emphasis is put on making the weight of an IP address small or 

that more emphasis is put on making the weight of words small, the filter can rely more 

on the IP address. Because machine learning systems can see IP addresses fewer times 

than words to understand that it indicates good messages or spam, the IP addresses can be 

10 given a higher weight and thus more value can be added to the overall determination of 

whether a message is spam. As shown by experimentation of this, substantial increases 

in gains were observed. 

Moreover, origination features like IP addresses and destination features like 

URLs are both very powerful parts of a message because they cannot be easily faked by 

15 spammers. As a result, they can be very powerful features for a spam filter and in 

particular, a machine learning based spam filter. Unfortunately, a generalization problem 

can exist. In particular, the IP address and/or URL features can change from day to day; 

thus filters trained to emphasize IP addresses over words can be ineffective and useless. 

For instance, a spammer who sells mortgage refinancing can change his IP 

20 address from week to week. Some messages about mortgage refinancing are legitimate, 

although the vast majority is spam. If a filter has been trained to learn key words such as 

"mortgage" "refinance" "no" "obligation" and "free" as well as IP addresses, then it can 

determine to ignore all of those key words common to the mortgage-type messages and 

only look at the IP addresses because that may be the only feature different among the 

25 messages. This means that the filter may not factor the presence of the above key words 

in to its decision as to whether the message is most likely to be spam. When the 

spammer changes his IP address and sends the mortgage message again, the filter may 

not generalize to the new message because it does not recognize the new IP address. In 

the meantime, it can take a few weeks to update the filter and this delay can lead to the 

30 delivery of undesirable amounts of spam. 

8 
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Figs. 1-4 which follow below address the generalization to new messages in 

accordance with an aspect of the present invention. In Fig. 1, there is illustrated a high- 

level block diagram of a system 100 that facilitates spam prevention in part by training at 

least two different filters independently of each other using different feature types for 

5 each filter. The system 100 includes a feature extraction component 110 that can extract 

one or more features including origination or destination features as well as text or word 

related features from an incoming message(s). 

The extracted data can be analyzed or organized by a feature analysis component 

120 into two or more sets or subsets of training data for use with a respective training 

10 component 130. For instance, the extracted data can include IP addresses, the top 24 bits 

of IP addresses, the top 16 bits of IP addresses, URLs as well as domain names (fully 

qualified domain names and the sub-domains thereof), header line information, words, 

phrases, and/or character strings. Thus, the set of training data can comprise a first subset 

comprising IP address data, a second subset comprising the top 24 bits of IP addresses, a 

15 third subset comprising the top 16 bits of IP addresses, a fourth subset comprising URL 

data, and/or a fifth subset comprising substantially all other relevant text-related data. 

The filter training component 130 can include a plurality of subcomponents that 

can individually train a first filter 140 on a particular subset of training data which is 

separate and apart from the training of a second filter 150 using a different subset of 

20 training data. For example, the first filter 140 can be trained on the IP address data (160) 

(or URL data 170). Meanwhile, the second filter 150 can be trained on the text-related 

features. As a result, the two filters are trained independently of the other such that the 

training of the one filter does not unduly influence the training of the other. Thus, when 

spammers change their IP addresses every few weeks, the IP address is not blindly relied 

25 upon to detect for spam. Instead the text-feature trained filter (150) can be employed to 

catch it. 

Moreover, multiple filters can be trained, whereby each filter is trained on a 

different feature type to facilitate generalizing to new variations of features in spam 

messages. For example, when a full 32 bits of an IP address are not discernible, filters 

30 can be trained on less than 32 bits of the IP addresses. One filter can be trained on the 

top 24 bits of IP addresses, another filter can be trained on the top 16 bits of IP addresses, 
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still another filter can be trained on URL data, etc. The same can be done with respect to 

domain names (sub-domains of fully qualified domain names). As a result, the most 

specific filter or model can be used based on the most amount of information available in 

an incoming message. For instance, if there is insufficient data on a particular IP address 

extracted from the message, but the top 16 bits of that IP address has been observed in 

previous messages, the filter trained on the top 16 bits can be employed since this is the 

most specific filter available based on the available data. 

It should be appreciated that such specific filters can include or exclude other 

features and in particular, text-based features. For example, the filter trained on the top 

16 bits of an IP address can also be trained on text-based features such as keywords, 

phrases, and the like. Conversely, the 16-bit filter can forgo training on text-based 

features. In such a case, an additional filter trained on the text-based features may be 

employed to filter the incoming messages. 

In an alternative scheme, two or more different machine learning filters can be 

trained and employed concurrently or consecutively to more accurately detect spam - for 

example, one using at least one of the IP address features and the URLs, and the other 

using other relevant features. If these are probabilistic models, this is equivalent to 

assuming independence between the features in one model and the features in the other 

model. This can be somewhat unintuitive - one would expect the source of spam to be 

highly correlated with its content, so an explicit assumption of independence is 

surprising. Some model types (Naive Bayes) assume independence between all features, 

and adding IP addresses and URLs as independent features to such a model is natural. 

Naive Bayes models typically assume independence not because such independence is 

true, nor because it improves the model, but primarily because when all features are 

assumed independent, modeling becomes very simple. However, Naive Bayes models 

typically have mediocre performance for spam filtering when compared to other model 

types (e.g., support vector machines (SVMs), perceptrons, maximum entropy (a.k.a. 

logistic regression), neural networks) that explicitly model dependence. 

One of these more powerful model types can be used for modeling non-IP, non- 

domain features. When the base model type used for other features is powerful enough to 

model dependencies, it is very surprising to explicitly model either the URLs or the IP 

10 
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addresses as independent of the other features. The two or more models so trained can 

then be combined in multiple ways. If both models return scores of some sort (e.g., 

probabilities), the scores can be added together or multiplied together. Alternatively, an 

additional model such as a weighted linear combination, for example, can be trained to 

combine the scores. 

Referring now to Fig. 2, there is illustrated a schematic diagram of an exemplary 

path 200 that a message 205 can take upon its arrival according to an aspect of the 

present invention. In particular, Fig. 2 demonstrates the utilization of two independently 

trained filters 210 and 220 when detecting for spam. Upon its arrival, the message 205 

can be subjected to an examination by one or more feature-specific filters to determine 

whether the message is spam or legitimate. For instance, in the prior example where the 

spammer changed his IP address, the next time the message is received, it can be from a 

different or unknown IP address. To combat such an occurrence, two filters can be 

trained: one for the case where the IP address is known 230 and one for the case where 

the IP address is unknown 240. In addition, a filter trained only on other relevant features 

(e.g., text-based features) can also be trained (220). 

In this instance, the text trained filter 220 can be applied to the message together 

with the unknown IP address filter 240 in order to determine whether the message is 

spam since the IP address extracted from the message is unknown. The unknown IP 

address filter can be trained by using other messages having unknown IP addresses which 

were received during a particular time frame. For example, messages also having 

unknown IP addresses that were received at about the same time as the current message 

can be used. 

Unknown IP addresses can be viewed at several levels. For example, an unknown 

IP address can be one that has never been seen in its exact form; however, the top 16 or 

24 bits of the IP address may have been observed before. Thus, a filter trained only on 

the top 24 bits can be employed. If only the top 16 bits of the IP address in the message 

have been seen before, then the 16-bit filter can be used - with or without the text-related 

filter. However, if the top 16 bits have never been seen before, then the text-related filter 

can be used alone. Thus, the filtering system can be optimized to generalize to employ 

the most specific filter or model for which there is sufficient data. 

11 



MS305314.1 

Various methodologies in accordance with the subject invention will now be 

described via a series of acts. It is to be understood and appreciated that the present 

invention is not limited by the order of acts, as some acts may, in accordance with the 

present invention, occur in different orders and/or concurrently with other acts from that 

shown and described herein. For example, those skilled in the art will understand and 

appreciate that a methodology could alternatively be represented as a series of 

interrelated states or events, such as in a state diagram. Moreover, not all illustrated acts 

may be required to implement a methodology in accordance with the present invention. 

Referring now to Fig. 3, there is illustrated a flow diagram of an exemplary 

method 300 that facilitates building feature-specific filters separately from one another 

for employment in a spam prevention system. In particular, the method 300 involves 

obtaining training data at 310. The training data can comprise any number of messages 

that may be known to be either spam or good messages. At 320, one or more origination 

or destination features can be extracted from the message(s). Such features include IP 

address data (origination) and URL data (destination). At 330, a first filter can be trained 

using only the IP address or URL data. Meanwhile at 340, other relevant features such as 

text-related features can be extracted from the message(s) and then used to train a second 

filter at 350. It should be appreciated that the text-related features can also be extracted 

at about the same time as the origination and destination features at 320. 

As can be seen in the figure, the second filter trained only on non-origination and 

non-destination features is trained separately and independently from the origination or 

destination-based filter. This mitigates undue influence from either feature over the other 

when examining messages for spam-like qualities and characteristics, which can be 

particularly pertinent when spam messages have changed slightly from previous known 

versions. 

Though not depicted in the figure, extracting and filtering URL data presents 

additional challenges since a message can have multiple URLs included therein. Some 

URLs may be known and some may be unknown. In view of this, one filter for the 

known URLs can be employed and a different filter can be employed when at least one 

URL is unknown in the message. 

12 
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Moreover, the present invention assumes independence between an IP address (or 

URL) and other features such as text features. However, the invention can assume 

dependence between text features. For example, the system or method as described in 

Figs. 1-3, supra, can know that "click" and "here" go together. That is, independence is 

not assumed between "click" and "here" and thus, these dependencies can be modeled 

accordingly. On the contrary, independence is assumed between the IP address the "click 

here" comes from and the actual text. This runs directly contrary to Naives Bayes models 

that typically assume independence between all features. As demonstrated, the present 

invention assumes independencies between some features and dependencies between 

other features. 

Referring now to Fig. 4, there is illustrated a flow diagram of an exemplary logic 

process 400 that can be employed when determining whether incoming messages are 

spam. The process 400 involves receiving a new message(s) at 410 and then extracting 

useful data from the message at 420. Such useful data can include IP address data and 

text-related data. Following therefrom, it can be determined at 430 whether the IP 

address is known - that is, has it been seen before in previous messages such that a 

particular filter would recognize it. If the IP address is known, then the IP address data 

can be run through a known IP address filter at 435. 

Conversely, if the IP address is unknown at 430, then the method can determine if 

the top 24 bits of the IP address data are known at 440. This can be an important 

determination since it is possible that the IP address extracted from the message is 

incomplete. Alternatively, if an exact match to the IP address is unknown, but other 

messages having the same top 24 bits have been observed in previous messages, a filter 

trained on the top 24 bits of that IP address can be used to determine if the message is 

spam at 445. However, the top 24 bits may be unknown as well. In this case, it can be 

determined whether the top 16 bits of that IP address are known at 450. If yes, then the 

top 16 bits of the extracted IP address data can be run through a 16-bit trained filter at 

455. If no, then the available IP address data can be run through a filter trained up on 

other messages received near the same time as the current message that also have 

unknown IP addresses at 460. 

13 
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Concurrently or following therefrom, extracted text-based features can be run 

through a text-based feature filter at 470. The results (scores) from the filtering runs can 

be collected and then combined at 480. There are different ways to combine filter results 

from the at least two filter models. In one approach, the scores can be multiplied. 

Another approach calls for adding the scores together while a third approach assesses 

both scores based on the particular filter's effectiveness in detecting spam, for example. 

In other words, if an IP address model is about 90% effective and a text features model is 

about 10% effective, the overall effectiveness of the filtering scheme can be concluded to 

be about 80% effective because the IP address model can be trusted more, and hence 

given more value or weight in this determination. An additional filter can be trained to 

combine scores in such a manner. Finally, a message verdict can be obtained at 490. 

Messages can include many features of a particular type, and in many cases, it is 

not clear which feature is the relevant one because spammers may try to confuse spam 

filters, thus rendering the features ambiguous. In particular, there are two cases. First, 

with URLs, a spammer may add as many URLs as he wants to the message. Second, 

there is the IP address. In many cases, such as on a server, the system can tell which is 

the last IP address external to the system, but this is relatively uncommon on a client. In 

particular, messages are typically sent from server to server to server. In some cases, 

especially email server software, the last IP address external to the recipient's 

organization can be clearly identified. Unfortunately, this is the only (external) IP 

address that the recipient can trust - since there is no reliable way to know which other IP 

addresses were actually used. On client software, the client will receive a list of IP 

addresses (in reverse order from which they were received.) He does not know which 

ones are external to his organization, and which ones are internal. As on the server, of 

the external IP addresses, he can only trust the last external address (highest external 

server on the list) - except he does not know which IP address this is. 

As previously mentioned, the ambiguity problem also exists for URLs. Typically, 

a spammer will only send users to one URL, but he can include links to other domains, 

including known good domains. The links to the known good domains will typically be 

in places where users are unable to click on them, but where it is difficult for an 

automatic spam filter to tell the difference between the true link and the false ones. 

14 
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There are a couple of common heuristics for finding the last external IP address. 

Unfortunately, none of them consistently work with reasonable accuracy. In one 

heuristic, the MX record for the recipient's organization is looked up. For example, if his 

email address is known to be name@yourdomain.com, the MX record, which contains 

the list of IP addresses for yourdomain's gateway servers for yourdomain.com can be 

looked up. The client then looks down through the received-from list until one of these 

addresses is found. Unfortunately, this does not always work because the inwards and 

outwards IP addresses may be different for the gateway box. 

A similar heuristic uses internal IP addresses. Some IP address ranges are 

internal-only (those that start with 192, for instance). By going down through the list 

until one finds an IP address that is not definitely internal, perhaps one can find the first 

external one. Similarly, one can perform reverse IP lookups on each IP address in the 

list, and see if it maps to the same domain as the recipient. Eventually, one finds an IP 

address that fails both of these heuristics, and assumes it is the last external one. 

Unfortunately, these heuristics don't necessarily work either. For instance, some 

companies' servers use statically defined addresses, not the ones in the internal only 

ranges. Furthermore, the reverse-IP mapping is not always set up correctly. Finally, 

some domains owned by a common owner may use the same servers for both domains. 

Imagine that Zoomail and ZNN are domains which use the same serves for both domains 

and Zoobox is used to access messages on Zoomail or ZNN on a client. If Zoomail uses 

.zoomail.com for all its servers - then a Zoobox client for a ZNN user would find such a 

server on its list and assume it was external - so even requiring all admins to set up their 

internal server reverse IP addresses correctly would not work. 

One algorithmic methodology that has been shown to work has been described in 

the related co-pending application (Serial No. 10/454,168). As stated therein, one way 

for spam filtering software to find this sender's IP address is to know the mail server 

configurations at an organization. In general, if one knows which machines pass to 

which other machines in which situations, one can determine the sender's IP address. 

However, especially for spam filtering software installed on email clients, it may not be 

convenient to describe the server configuration. An alternate approach involves utilizing 

MX records to determine the true source of a message. MX records list, for each domain, 
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the FQDNs (fully qualified domain names - the names of the machines) of recipients of 

email for that domain. These FQDNs can be mapped to their IP addresses, and we can 

trace back through the received from list until we find an IP address corresponding to an 

FQDN corresponding to an entry in the domain's MX record. The IP addresses that this 

machine received from is the sender's IP address. Imagine that 1.2.3.101 is the only MX 

record for x.com. Then by finding the line that received from 1.2.3.101, we know the 

next line corresponds to x.com's incoming mail server, and thus that the IP address in 

that line corresponds to the IP address that sent to x.com. 

Line comment 

Received:  from a.x.com 

([1.2.3.100])  by b.x.com Tue, 

22 Apr 2003 13:11:48 -0700 

lllLCiIld.1 LU A.L/UII1 

Received:  from mailserver.x.com 

([1.2.3.101]) by b.x.com Tue, 

22 Apr 2003 12:11:48 -0700 

1.2.3.101 is an MX record for x.com so we 

know next line is first internal to x.com 

Received:  from outside.com 

([4.5.6.7]) by 

mailserver.x.com Tue,  22 Apr 

2003 11:11:48 -0700 

This is where x.com received the message; 

this is the last trusted line. Use 4.5.6.7 as 

sender's IP address 

Received:  from trustedsender.com 

([8.9.10.11]) by outside.com 

Tue,  22 Apr 2003 10:11:48 - 

0700 

This line may be fake, constructed by 

server at 4.5.6.7 

Note that there is no currently accepted standard for listing outgoing mail servers, 

and note that this heuristic can fail if, for instance, IP addresses internal to an 

organization are different than those external to an organization, or if an organization 

sends mail from one machine listed in an MX record indirectly to another machine listed 

in an MX record. Note also that in the special case where the sender's IP as found above 

is found to be internal to the organization, as could happen if one machine in the MX 

record sent to another in the MX record, the process is continued as above. In addition, 

certain IP addresses can be detected as internal (because they are of the form lO.x.y.z or 

172.16.y.z through 172.31.y.z or 192.168.0.Z through 192.168.255.Z, a form used only for 
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internal IP addresses); any address internal to an organization can be trusted. Finally, if a 

received from line is of the form "Received from a.x.com [1.2.3.100]" and an IP address 

lookup of a.x.com yields 1.2.3.100 or a reverse IP address lookup of 1.2.3.100 yields 

a.x.com and if x.com is the organization, then the next line can also be trusted. 

Using these observations, it is often possible to find the sender's IP address. The 

exemplary pseudocode is as follows: 

bool fFoundHostlnMX; 

if (external IP address of MX records matches internal IP address 

of MX records) 

{ 

fFoundHostlnMX = FALSE;  # itfs worth looking for 

} else { 

# This is also the case to use when we don't know if the 

internal and external addresses match. 

# If we use this case, we often return "don't know" but 

that's better than being wrong 

fFoundHostlnMX = TRUE;  # it!s not worth looking for, pretend 

we already found it 

} 

for each received from line of the form Received from a.b.c 

[i.j.k.l] { 

if i.j.k.l in MX records of receiver domain 

{ 

fFoundHostlnMX = TRUE; 

continue; 

} 

if not fFoundHostlnMX 

{ 

# Has not yet gone through an MX record, must be internal 

continue; 

} 

if i.j.k.l is of form 

lO.x.y.z or 
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172.16.y.z to 172.31.y.z or 

192.168.0.Z to 192.168.255.z 

{ 

# Must be internal 

continue; 

} 

if DNS lookup of a.b.c yields i.j.k.l and b.c is receiver 

domain 

{ 

# Must be internal 

continue; 

} 

Output sender's alleged FQDN a.b.c and sender's actual IP 

address i.j.k.k 

} 

If we reach here, then Error: unable to identify sender's alleged 

FQDN and sender's actual IP address 

Unfortunately, much of the time, the previous algorithmic methodology simply 

concludes that it is unable to find the sender's actual IP address with confidence. 

Turning now to Fig. 5, there is a flow diagram of one exemplary technique 500 

that may work. The technique 500 involves a machine learning system attempting to 

learn which IP addresses are internal and which are external. For instance, on an email 

client, we can keep track of which messages a user marks as spam, and which messages a 

user marks as good at 510. When the user identifies a message as spam, it can be 

determined that at least one of the two or more IP addresses is bad at 520. At 530, we 

can then try to find an assignment of IP addresses (or hostnames from reverse IP lookups) 

to internal and external that maximizes the probability of the training data, or that 

maximizes accuracy on the training data. Following, at 540, the weight of the bad IP 

address can be adjusted for being an external IP address. 

Referring now to Fig. 6, there is illustrated a flow diagram 600 of another option 

that can try to detect, using for instance a text-only model, good messages and spam at 

610, and to use this as an input to the learning of which IP addresses are internal or 

external at 620. For instance, good messages do not include forgeries, and so may make 

18 



MS305314.1 

it clear, e.g., from domain names, which are the external IP addresses, thus making it 

clear which are the recipient's edge servers. 

Yet another option is to assume that the worst scoring IP address or worst scoring 

URL in a message is the most accurate predictor. That is, let SCORE(input) represent the 

score of an INPUT {e.g., an IP address or URL). High values are considered bad (more 

spammy) in the present system. So, then the overall score returned for the IP part of a 

message in our system with n incoming IP addresses would be MAX(SCORE(IPi), 

SCORE(IP2),..., SCORE(IP„)). The score function might be a constant for each IP 

address. In other words, there is a list of IP addresses and their corresponding scores, or 

it might be a function in its own right, e.g., we use information such as the IP address, the 

top 24 bits of the IP address, reverse DNS lookups on the IP address, etc., as features to a 

scoring function. The same can be done for URLs. 

It is typically hard to do machine learning for functions that are not smoothly 

differentiable, such as the MAX function. However, the following describes a technique 

for doing such learning. This algorithm can be written as if it is for messages and IP 

addresses and features of IP addresses, but it will be evident that the same algorithm can 

be used for inputs other than email messages, e.g., any "instance" for a machine learning 

system, and it will be evident that the properties of interest are not limited to IP 

addresses, but could be URLs, words, or any properties of the training instance that may 

occur more than one time within a training instance. 

The algorithm that is proposed is as follows: 

Let MAXSCORE(mk) be the overall score of message k. 

Let IPki IPk2,... IPkki represent the IP addresses in message k. 

Then MAXSCORE(mk) = MAX(SCORE(IPki), SCORE(IPk2), 

SCORE(IPkk,)). 

Assume there is an objective function that we are trying to maximize (e.g., 

maximize accuracy on the training data, maximize the log probability of the training data, 

maximize a combination of accuracy and negative sum of square of weights, etc.). Call 

this function OBJECTIVE(ml...mk, wl...wn): it is a function of the weights and the 

training messages. 

Assume that OBJECTIVE is a differentiable function of the weights. 
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Assume that the SCORE function is the sum of the weights. The exemplary 

pseudocode is as follows: 

for each iteration until enough iterations or convergence { 

for each feature fA { 

5 let ml...mp be the training instances  (e.g., messages) 

that have feature fi in one of their IP addresses { 

let MAXSCORE-fi(mq, w)  be the value that - 

MAXSCORE(mq) would have if feature i had weight 

w,  and all other weights were unchanged. 

10 for each message mq,  find the weight vq for fi 

such that MAXSCORE-fi (mq, w)  shifts from being 

independent of w to being dependent on w (if all 

IP addresses in mq have feature fif  then vq = - 

infinity.)    In particular, vq = limit as w 

15 approaches infinity of   MAXSCORE-fL (mq,. - 

infinity)  - MAXSCORE-f L (mq, w)  + w. 

sort all messages mq by the weight vq in 

increasing order.    (Assume that mq and vq refer 

to the sorted order.) 

20 now,  for the current feature fir  for values of w 

between vq and vq+1, OBJECTIVE(ml.mn, wl...wq- 

1,w,wq+1,...wn)  is differentiable; use standard 

means to solve for the best value.    Note that 

depending on the form of OBJECTIVE,  even more 

25 efficient techniques may be possible. For 

instance,  if OBJECTIVE is simply the function 

that gives one point for each correctly 

classified message, then a binary search across 

all values can be used, and only values w = vq 

30 for some q will change the objective function 
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Fig. 7 illustrates the above algorithmic methodology 700 as a flow diagram. In 

particular, for each feature fj, let ml up to mp be the training instances or messages that 

have feature £ in one of their IP addresses at 710. At 720, find the weight (vq) for fj 

where the message would shift from being independent of fj's weight to dependent on fj's 

weight - for each message. At 730, sort the messages by weight (vq). At 740, for fj, 

solve for the best value for values in a given range of weights. At 750, iterate over each 

IP address feature and learn how to adjust the weights of each feature to optimize the 

weight of any one IP address feature at any given time. 

Thus, the method 700 is concerned with optimizing the weights associated with 

one feature at any given time. Messages that have that feature can be found; thus any 

other messages are not a concern. Essentially, the method wants to find the best weight 

for a feature. If it is a really high weight, it will be higher than everything else so as this 

weight changes, every other weight can change as well. However, if it is a really low 

weight, it will be lower than everything else and changing it will not change any other 

weight. So for each message, finding the value of that weight (vq) which the message 

would be dependent on is desired. Once the vq values for each message are determined, 

the messages can be sorted accordingly. Instead of checking different ranges and looking 

within each range to find the best value of vq, the change points can be looked at since 

these can be true points of interest. 

Yet another technique for learning such functions is to notice that MAX(ai, a2, ..., 

an) is approximately equal to SUM(aix, a2
x,an

x)(1/x) where the approximation becomes 

more accurate the larger the value of x. One can use this function instead of the MAX 

function to get a function that is differentiable, and then one can use standard gradient 

descent style optimization techniques. Gradients may become steep for large values of x, 

so one may wish to initially use a small value of x, e.g., 1 or 2, perform gradient descent, 

and then increase x and repeat. 

When an IP address or URL is present and known, it can typically be one of the 

most valuable features in the message. Machine learning systems may not naturally 

assign more weight to these known IP addresses and URLs than to other features, such as 

known words. The system must be told in some way that these weights are more useful 

than other weights. This can be referred to as a value problem. 
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The value problem can be addressed through smoothing, which is also known as 

regularization. Typical machine learning systems smooth their parameters in some way. 

To give five examples, neural networks often use weight decay; maximum entropy 

models (also known as logistic regression) can use a Gaussian or Exponential prior; 

5 Support Vector Machines (SVMs) typically have a term minimizing the sum square of 

the weights, or the sum of the absolute values of the weights; and decision trees are often 

smoothed with a Dirichlet prior. 

For all of these techniques, it is possible to modify the regularization so that the IP 

addresses or URLs are counted as more valuable. In addition, the smoothing can vary for 

10 sub-portions of features such as IP addresses or URLs. For example, different smoothing 

values can be employed for all 32-bits, a top 24-bits, and a top 16-bits of an IP address. 

Fig. 8 provides a schematic diagram of the various smoothing techniques as 

modified by three machine learning systems to altering the associated smoothing effects. 

For instance, with a neural network 810, one can decrease the amount of weight decay on 

15 weights from IP addresses or URLs at 815. For Support Vector Machines 830, the 

formula usually optimized is (835): 

X w? + c X Penalty(score(messageU)\ truth(j)) 

where penalty is a penalty function. 

This can be rewritten as: 

20 — J] wf + J] penalty(score(message(j)\ truth(j)). 

If we want, we can use different weights for different features. Instead of having 

one value of c, we can have one value of cx for each weight wi: 

^—wj + J] penalty(score(message(j)), truth(j)). 

With maximum entropy models 820, one can use a larger standard deviation for 

25 the Gaussian prior at 825. For maximum entropy models, the formula usually optimized 

f \ f \ 

is 

\ i J \ J J 

That is, the first term is the probability of the training data, given the parameters 

of the model (A). The second term is the probabilities of each parameter. The 
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probability of a parameter is defined by, for instance, a Gaussian distribution, typically 

with mean 0, and standard deviation G\. We can make the value of o\ be different for 

different parameter types, including making it larger for IP address or URL features. 

Typically, features are assigned values of 0 or 1. For instance, the presence of an 

IP feature such as 1.2.3.4 might result in the presence of a feature fiooo that has value 1 

when the IP address is present and 0 when it is not. It will be recognized by those skilled 

in the art of machine learning that using a larger value for fiooo, e.g. fjooo = 10 when the IP 

address is present, 0 when it is not, will have a similar or identical effect in many model 

types, including SVMs and maximum entropy models, as changing the smoothing 

explicitly. 

Note that in practice for IP addresses, features based not just on the IP address, 

but based also on the top 24 and top 16 bits, or other combinations of bits can be 

employed. Note that for URL features portions of the URL, such as the fully qualified 

domain name, and sub-domains of the fully qualified domain name can also be used. The 

systems and method described hereinabove can also be combined with quarantining 

techniques (e.g., suspending delivery of messages until more information can be collected 

about the messages) and with a feedback loop, whereby participating users provide 

feedback in the form of classifications of messages to facilitate updating and/or building 

filters. 

In order to provide additional context for various aspects of the present invention, 

Fig. 9 and the following discussion are intended to provide a brief, general description of 

a suitable operating environment 910 in which various aspects of the present invention 

may be implemented. While the invention is described in the general context of 

computer-executable instructions, such as program modules, executed by one or more 

computers or other devices, those skilled in the art will recognize that the invention can 

also be implemented in combination with other program modules and/or as a combination 

of hardware and software. 

Generally, however, program modules include routines, programs, objects, 

components, data structures, etc. that perform particular tasks or implement particular 

data types. The operating environment 910 is only one example of a suitable operating 

environment and is not intended to suggest any limitation as to the scope of use or 
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functionality of the invention. Other well known computer systems, environments, 

and/or configurations that may be suitable for use with the invention include but are not 

limited to, personal computers, hand-held or laptop devices, multiprocessor systems, 

microprocessor-based systems, programmable consumer electronics, network PCs, 

minicomputers, mainframe computers, distributed computing environments that include 

the above systems or devices, and the like. 

With reference to Fig. 9, an exemplary environment 910 for implementing various 

aspects of the invention includes a computer 912. The computer 912 includes a 

processing unit 914, a system memory 916, and a system bus 918. The system bus 918 

couples the system components including, but not limited to, the system memory 916 to 

the processing unit 914. The processing unit 914 can be any of various available 

processors. Dual microprocessors and other multiprocessor architectures also can be 

employed as the processing unit 914. 

The system bus 918 can be any of several types of bus structure(s) including the 

memory bus or memory controller, a peripheral bus or external bus, and/or a local bus 

using any variety of available bus architectures including, but not limited to, 11-bit bus, 

Industrial Standard Architecture (ISA), Micro-Channel Architecture (MSA), Extended 

ISA (EISA), Intelligent Drive Electronics (IDE), VESA Local Bus (VLB), Peripheral 

Component Interconnect (PCI), Universal Serial Bus (USB), Advanced Graphics Port 

(AGP), Personal Computer Memory Card International Association bus (PCMCIA), and 

Small Computer Systems Interface (SCSI). 

The system memory 916 includes volatile memory 920 and nonvolatile memory 

922. The basic input/output system (BIOS), containing the basic routines to transfer 

information between elements within the computer 912, such as during start-up, is stored 

in nonvolatile memory 922. By way of illustration, and not limitation, nonvolatile 

memory 922 can include read only memory (ROM), programmable ROM (PROM), 

electrically programmable ROM (EPROM), electrically erasable ROM (EEPROM), or 

flash memory. Volatile memory 920 includes random access memory (RAM), which 

acts as external cache memory. By way of illustration and not limitation, RAM is 

available in many forms such as synchronous RAM (SRAM), dynamic RAM (DRAM), 

synchronous DRAM (SDRAM), double data rate SDRAM (DDR SDRAM), enhanced 
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SDRAM (ESDRAM), Synchlink DRAM (SLDRAM), and direct Rambus RAM 

(DRRAM). 

Computer 912 also includes removable/nonremovable, volatile/nonvolatile 

computer storage media. Fig. 9 illustrates, for example a disk storage 924. Disk storage 

924 includes, but is not limited to, devices like a magnetic disk drive, floppy disk drive, 

tape drive, Jaz drive, Zip drive, LS-100 drive, flash memory card, or memory stick. In 

addition, disk storage 924 can include storage media separately or in combination with 

other storage media including, but not limited to, an optical disk drive such as a compact 

disk ROM device (CD-ROM), CD recordable drive (CD-R Drive), CD rewritable drive 

(CD-RW Drive) or a digital versatile disk ROM drive (DVD-ROM). To facilitate 

connection of the disk storage devices 924 to the system bus 918, a removable or non- 

removable interface is typically used such as interface 926. 

It is to be appreciated that Fig. 9 describes software that acts as an intermediary 

between users and the basic computer resources described in suitable operating 

environment 910. Such software includes an operating system 928. Operating system 

928, which can be stored on disk storage 924, acts to control and allocate resources of the 

computer system 912. System applications 930 take advantage of the management of 

resources by operating system 928 through program modules 932 and program data 934 

stored either in system memory 916 or on disk storage 924. It is to be appreciated that 

the present invention can be implemented with various operating systems or 

combinations of operating systems. 

A user enters commands or information into the computer 912 through input 

device(s) 936. Input devices 936 include, but are not limited to, a pointing device such as 

a mouse, trackball, stylus, touch pad, keyboard, microphone, joystick, game pad, satellite 

dish, scanner, TV tuner card, digital camera, digital video camera, web camera, and the 

like. These and other input devices connect to the processing unit 914 through the system 

bus 918 via interface port(s) 938. Interface port(s) 938 include, for example, a serial port, 

a parallel port, a game port, and a universal serial bus (USB). Output device(s) 940 use 

some of the same type of ports as input device(s) 936. Thus, for example, a USB port 

may be used to provide input to computer 912 and to output information from computer 

912 to an output device 940. Output adapter 942 is provided to illustrate that there are 
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some output devices 940 like monitors, speakers, and printers among other output devices 

940 that require special adapters. The output adapters 942 include, by way of illustration 

and not limitation, video and sound cards that provide a means of connection between the 

output device 940 and the system bus 918. It should be noted that other devices and/or 

5 systems of devices provide both input and output capabilities such as remote computer(s) 

944. 

Computer 912 can operate in a networked environment using logical connections 

to one or more remote computers, such as remote computer(s) 944. The remote 

computer(s) 944 can be a personal computer, a server, a router, a network PC, a 

10 workstation, a microprocessor based appliance, a peer device or other common network 

node and the like, and typically includes many or all of the elements described relative to 

computer 912. For purposes of brevity, only a memory storage device 946 is illustrated 

with remote computer(s) 944. Remote computer(s) 944 is logically connected to 

computer 912 through a network interface 948 and then physically connected via 

15 communication connection 950. Network interface 948 encompasses communication 

networks such as local-area networks (LAN) and wide-area networks (WAN). LAN 

technologies include Fiber Distributed Data Interface (FDDI), Copper Distributed Data 

Interface (CDDI), Ethernet/IEEE 1102.3, Token Ring/IEEE 1102.5 and the like. WAN 

technologies include, but are not limited to, point-to-point links, circuit switching 

20 networks like Integrated Services Digital Networks (ISDN) and variations thereon, 

packet switching networks, and Digital Subscriber Lines (DSL). 

Communication connection(s) 950 refers to the hardware/software employed to 

connect the network interface 948 to the bus 918. While communication connection 950 

is shown for illustrative clarity inside computer 912, it can also be external to computer 

25 912. The hardware/software necessary for connection to the network interface 948 

includes, for exemplary purposes only, internal and external technologies such as, 

modems including regular telephone grade modems, cable modems and DSL modems, 

ISDN adapters, and Ethernet cards. 

What has been described above includes examples of the present invention. It is, 

30 of course, not possible to describe every conceivable combination of components or 

methodologies for purposes of describing the present invention, but one of ordinary skill 
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in the art may recognize that many further combinations and permutations of the present 

invention are possible. Accordingly, the present invention is intended to embrace all 

such alterations, modifications, and variations that fall within the spirit and scope of the 

appended claims. Furthermore, to the extent that the term "includes" is used in either the 

5 detailed description or the claims, such term is intended to be inclusive in a manner 

similar to the term "comprising" as "comprising" is interpreted when employed as a 

transitional word in a claim. 
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